Design of a rule based monetary policy in a Central Bank Digital Currency System

Jacob Wijngaard¹ Kees van Hee²

1 Introduction

The current monetary system is a two-tiered system. The Central bank (CB) issues base money, including cash and bank reserves. That is the first tier. The commercial banks issue claims on base money (e.g. demand deposits). That is the second tier. Recently the possibility to give more parties access to base money is seriously considered. It is called Central Bank Digital Currency (CBDC). In its most extreme form it makes the money creation function of the commercial banks superfluous and leads to a one-tiered system: all economic actors pay each other with base money. It has not much support yet among bankers, monetary economists and politicians, but it is worth to explore the possibilities also the possibilities with respect to monetary policy.

The goal of monetary policy is to keep the buying power of the currency stable. In the current system this appears to be difficult. The main tool of the CB is to control the rate at which the banks can borrow base money from the CB. This tool is ineffective now. To keep control the CB has to switch to some form of Quantitative Easing (QE) and that is not very effective either. And the lack of transparency and stability in the monetary policy leads in itself to dynamics. A transfer to a CBDC based system gives the opportunity to redesign the monetary policy. In a companioning paper (Van Hee and Wijngaard (2021)) we describe how such a CBDC based system can be organized. In this paper we focus on the monetary policy.

Section 2 discusses why it is necessary to redesign the system and gives a short description of the proposals developed in Van Hee and Wijngaard (2021). Section 3 explores the tools that are available now in developing a monetary policy. In sections 4-7, we show how these tools can be used to design an attractive monetary policy. Important elements are: linking the current accounts to a proxy of the domestic product and replacing the use of government bonds by the

¹ Professor emeritus, RuG, Operations

² Professor emeritus, TU/e, ICT

use of specific savings accounts. It results in a rule based monetary policy with automatic inflation control and stable risk free interest rates. Section 8 gives conclusions and suggestions for further research.

2 Towards a new monetary system

The current system is a *grown* system. Its weaknesses became apparent by the financial crisis of 2008 and have been described sufficiently broad (e.g. Roubini and Mihm (2010), Admati and Hellwig (2013)). We propose to *design* a new system.

Today we have two forms of money, cash (coins and bank notes) and demand deposits (balances on current bank accounts). Cash is part of the so called *base money*³. The rest of the base money is invisible for normal economic actors: households and businesses. It consists of the reserves of (commercial) banks and the government, at the Central Bank (CB). A demand deposit is (only) a *claim* on base money. Such claims are generally accepted and form the main part of the available money. Banks are able to create these claims more or less freely. Note that these claims are digital, so, it is a form of digital money. Today ca 95 % of our money is claims on base money and if all economic actors would cashing in their claims, this would be a disaster because banks don't have the base money. Bank credits are a strange form of money indeed. Nevertheless, from 1971, after the abolition of the Bretton Woods agreement, it has functioned well for a while. By adapting the interest rate for reserves, the availability of credit was controlled, and through this the whole economy. And especially during the period 1985 – 2005, the system appeared to be really "under control". That is why that period is called "the great moderation". In between, however, there are serious doubts. It is clear that the banks have played an important role in the emergence of the financial crisis. The American mortgage market was the biggest culprit. But the lack of transparency and the sale of too complex financial products contributed as well⁴. There are general rules with respect to reserves and liquidity (Basel I, II and III). But the position of a bank is judged afterwards and the judgement of the different categories of assets and the validity of the rules are not always clear⁵. This implies that the banks have in fact a (too) large freedom with respect to the creation of money, because the claims are rarely cashed and all checks and balances are directed to a smooth continuation of the system.

³ See Ryan-Collins, Greenham, Werner and Jackson (2011).

⁴ See Roubini and Mihm (2010).

⁵ See Admati and Hellwig (2013).

This is a fundamental weakness in the existing system. It is directly connected with the twotiered character of the system, that we use bank money, claims on base money, while we are not very interested in the use of cash, the only form of base money accessible to us. It is time to widen the role of base money (or CBDC) and have that as our primary form of money, the only legal tender. So, the CB creates the money and the main role of the banks is to intermediate between lenders and borrowers. Our proposal for such a new system is described in Van Hee and Wijngaard (2021). It is inspired by the proposals of the Positive Money movement (Jackson & Dyson (2012)) in the UK⁶, but differs in some respects and is more explicit in its design, especially regarding privacy and security. Here we sketch the main elements. It is completely different from the movements of the Central Banks in e.g. Sweden and the Eurozone, where one explores the possibilities to combine the introduction of CBDC with continuation of the current system⁷.

- Actors have *CBDC-accounts,* as many as they like. An account is an abstract object that is "owned" by the actor and that is stored on the hardware of the actor or in a *cloud* of a service provider operating on behalf of the actor. The account has several properties such as a *unique account identity* and the identity of the actor. But the most essential property of the account is the *balance*, i.e. the amount of currency on the account. This balance is at least zero, so never negative.
- An exception is made for banks. If they have a license of the CB, they are allowed to borrow from the central bank. In order to do this there are besides the normal accounts at the CB also *C-accounts* (credit accounts), with a balance <= 0. To borrow from the CB, a bank can just transfer some money from her C-account to another account, making the balance on the C-account more negative.
- The (central) government has also such a C-account, to be able to borrow from the CB.
- All other actors may borrow money from other actors, in particular from banks, but not from the CB.
- Actors may use one of their accounts as a *bank savings account*. That means that they give a bank access to it and allow the bank to use the balance for loans to other actors. Of course, under certain conditions (interest, term, ...). Note that as long as the money is on the savings account it is not lended. As soon as it is lended to another actor the money moves from the savings account to the account of the lender. The bank administers this process.
- There is a *public database* as part of the CBDC-system and in that database there is some data of the accounts, but neither the balance itself nor the transactions themselves. What is stored is a *digital fingerprint* of the balance account. This is done by applying a one-way function or hash function to the account record and store this value. It can be used to verify

⁶ See Huber (2017) for an overview of the positive money movement.

⁷ See Sveriges Riksbank (2017) and ECB (2020).

the authenticity of an account record presented by the actor for updating, by applying this one way function to the current account record and compare the outcome with the stored value. The database is called "public" because all actors having access to it. We avoid the term "central" database because it will be a distributed database, i.e. a network of databases, but all under control of the CB. This database could be constructed as a blockchain, although we don't see any advantage of that.

- There is a *clearing/settlement* function in the CBDC-system. Here the most basic payment action is performed: the increase of the balance of the *acquiring* actor and the decrease of the balance of the *paying* actor. And there is a *secure transmission system* to send messages between actors and the CB, including the authentication of the sender and the integrity and confidentiality of the message.
- It is to expect that service providers are going to develop different kinds of services, to integrate the payments with the financial and management control of the actors. Since all actors use the same CBDC-system, this is a very open, competitive world.

The CB can be seen as a *trusted third party* for payments between two actors. But this does not mean that the CB keeps record of the values of balances of the actors. We only let the CB keep a fingerprint of the balance and maybe also of the transactions.

In this paper we focus on the *monetary policy* that can be applied in combination with such a CBDC-system. If necessary it is possible to create off-line payment possibilities and we assume therefore that *physical cash is no longer used*. There will be a transition period where CB-cash exists in parallel to CBDC, however we consider the final state with only CBDC here.

3 Exploring the tools for a monetary policy

Here we consider the case of one country with one CBDC-system. In most countries the main goal of the monetary policy is to control the price level. The aim is to realize an inflation of 2% or a little less⁸. This is a very narrow goal. We should not be happy with a stable inflation of 2%, but at cost of huge fluctuations in the interest rate. Why not also include in the goal a stable yield of saving and investing and, to keep it symmetric, also the cost of borrowing? Risks cannot be controlled, but it may be possible to control the risk free interest rate. This is related to taking care of sufficient credit possibilities, sufficient for a prospering economy, a goal that is

⁸ It is not clear whether this inflation rate of 2% is a goal in itself or rather to keep the interest tool of the CB effective. See Bordo and Levin (2017).

explicitly included in e.g. the monetary goals for the US⁹. We use the wider goal of a stable purchasing power in this broad sense.

In case of such a CBDC-system there are many tools available to realize the goal. CB and government have both an important role. The CB makes the money available and determines the conditions. The government is important through its fiscal policy and because of the way deficits are financed.

- Interest rate on reserves. Currently, the main tool for the CB is the interest rate for the reserves of the banks. In the new system, all actors have CBDC (which is base money) and there is no physical cash anymore. So, the interest tool is richer now. It is not restricted to values >=0 ("breaking the lower bound"¹⁰) and it is possible of course to distinguish between different types of actors and different conditions of availability. Note that a negative interest on CBDC can also be interpreted as a tax on having CBDC, a liquidity tax.
 - a) Banks can borrow from the CB. The interest rate on such loans is an important tool.
 - b) Households and businesses can be allowed to start a *savings account with the CB*, for longer term deposits. The interest rate on such savings accounts is also an important tool.
- 2) Indexing account balances. It is possible for instance to index the account balances to the price level, to keep the purchasing power of the account balance constant. This necessitates a monitoring process that keeps account of the changes in the price level p(t). Each account can only be adapted at transaction moments, because the CB only keeps the fingerprints of the accounts and their balances. When indexed, the balance is multiplied with $p(t)/p(t_l)$, with t_l the last time the account was updated¹¹. One step further is to link the account balances to some proxy of the nominal domestic product (*DP-linking*), instead of to the price level. All payments from households to businesses during the last year could serve as such a proxy. Since all payments or at least almost all payments are in CBDC it is possible to monitor these payments real time by labelling the transaction of the accounts (household accounts and business accounts) by the type of transaction.
- 3) Transaction tax. The way the government is financed is an important factor in the realization of stability. We assume that the government is at least partly financed by taxation. Changes in the value added tax (VAT) have also influence on the price stability. An increase in the price level could be compensated for by a reduction in the VAT. Changes in the deductibility of interest on mortgages influences the credit possibilities. It is important

⁹ See the website of the FED: https://www.federalreserve.gov/faqs/what-economic-goals-does-federal-reserve-seek-to-achieve-through-monetary-policy.htm.

¹⁰ See Buiter (2009) for a general treatment of this issue of "breaking the lower bound".

¹¹ Bordo and Levin (2017) mention this possibility, but choose for the interest tool to keep the price level stable.

to distinguish these taxes from the liquidity tax, the tax on the *account balance* that is mentioned in point 1).

- 4) Monetary financing of government deficits. Government deficits can be financed monetarily by borrowing from the CB. In our system, the interest rate for such loans is by definition equal to 0, since the CB is owned by the government. Note that this is also stressed in the Modern Monetary Theory (MMT)¹².
- 5) *Government activity on the financial market*. It is also possible to let the government be active on the financial market by selling different kinds of bonds. By using the dynamics of the financial market, the government may be able to reduce the cost of a deficit, but these activities contribute also to these dynamics.

It is clear that designing a good monetary policy is a multi-dimensional decision problem. And the use of government tools and CB tools have to be determined in combination. Of course it is necessary to structure it. Structure it towards *rules* and *discretion*. What are the rules? Who (which institution) monitors the rules and decides whether and how they have to be adapted. Where are we going to require discretion? An important question here is whether and how to involve politics. Somehow in this structure the role of the CB and the role of the government have to become clear.

The next four sections are devoted to the description of one specific possible design of the monetary policy. One where we use DP-linking and a government which borrows only from the CB. The DP-linking is described in section 4, together with a simplified version of the policy. The complete policy is described in section 5. The policy is almost completely rule based. In section 6 we discuss the limits of this rule based character of the policy. We also discuss how to organize the necessary decision making: the rules, the tuning of the parameters, the space for discretion and bargaining. In section 7 we sketch how such a policy could look like in the Eurozone.

4 Linking the accounts to a proxy of the domestic product

This section explains how to link the content of these accounts to a DP-proxy. The aim of this is to secure the buying power of the accounts. We are not going to secure the buying power of one currency unit, but the purchasing power of the total balance of each of the accounts.

First we will formulate this linking for an arbitrary macro-economic (aggregate) variable that can be monitored real time. Let $A(\cdot)$ be such a continuously available variable. Linking the

¹² See Kelton (2020).

current accounts to $A(\cdot)$ means that the balance of each current account is adjusted to $A(\cdot)$ each time a transaction takes place. Only at such moments the CBDC-system has access to the accounts. Suppose the accounts i and j are involved in a transaction that takes place at time t. Let $C_i(\cdot)$ and $C_j(\cdot)$ be the balances of these accounts. Just before the execution of the transaction, the balances are reset in the following way¹³:

$$C_i(t) \coloneqq \frac{A(t)}{A(t-\varepsilon_i)} \cdot C_i(t) \tag{1}$$

with $t - \varepsilon_i$ the time (in years) of the previous transaction with respect to account *i*, and a corresponding update for account *j*. The update is executed by the CBDC-system, together with the execution of the payment.

If the variable $A(\cdot)$ represents a stable economic value and reflects broad price changes, the linking procedure helps to secure the purchasing power of the current accounts. But it is important that it is continuously available. We propose to use a proxy of the domestic product, the total sum of all payments by households, for (new) real goods and services during the past year. We call this variable $D(\cdot)$. To keep track of $D(\cdot)$, it is necessary to label the transactions. In appendix 1 we discuss the definition of this proxy and the way of labelling in more detail.

With DP-linking the content of an account follows price increases as well as productivity increases. This may make it attractive for investors to put money on an account and just leave it there, enjoying the general productivity increases as return on investment in this account. This necessitates to "tax" the linked account. Instead of the DP-proxy, D(t), the *taxed DP-proxy*, $e^{-\tau t} \cdot D(t)^{14}$, is used. Equation (1) is replaced then by:

$$C_i(t) \coloneqq e^{-\tau \varepsilon_i} \frac{D(t)}{D(t-\varepsilon_i)} \cdot C_i(t)$$
(2)

The liquidity tax τ (per year) has to be sufficiently large to form an effective incentive to spend money instead of just keeping it.

We have to explain in more detail why this (liquidity) tax is necessary. The variable D(t) does not include any intermediate economic activity: the build-up of inventories, the production of intermediate products and of production equipment, the development of production processes and of know-how, etc. This reservoir of investments is going to contribute in the future to the value of $D(\cdot)$. Part of these investments is privately owned. The ownership can be direct or via a share or a loan. This private part of the reservoir may be expected to be stable. So the value of these private investments grows with $D(\cdot)$. Let W(t) be the value of these investments at time t and let $\Delta W(t) = W(t + 1) - W(t)$. The reservoir is owned by a relatively small part of the

¹³ := stands for "going to be equal to".

¹⁴ The function $e^{-\tau t}$ is the solution of the equation $\frac{df}{dt} = -\tau f(t)$, so the result of applying a proportional tax τ to f(t).

population. That implies that only little of the yield is consumed. Let ω be the yield per unit of value and c the consumption rate and let $W_n(t)$ be the contribution of new investors. Then:

 $\Delta W(t) = (1-c) \cdot \omega \cdot W(t) + W_n(t)$ (3) The fraction c is small and $W_n(t)$ is also small compared to $W(t)^{15}$. That means that the growth of $W(\cdot)$ is rather close to ω . So, the *average* yield on risky investments is rather close to the growth of $D(\cdot)$. That means that without liquidity tax it may become attractive not to spend the money. Just keeping it on the account gives a risk free growth that is close to the average yield of investing it in another way.

This taxation reduces the total amount of money. It is easy to compensate this reduction by adding the same amount of money to one of the accounts of the (central) government. We call this the *monetary tax account*. This leads to a very simple monetary policy: the account balances are linked to $e^{-\tau t} \cdot D(t)$, the CB transfers immediately what is taxed to the monetary tax account of the government, the government takes care of its own deficits by borrowing on the financial market and the banks have to use superfluous money of other actors to perform their crediting function. This policy is going to be a reference point in the further design of the monetary policy.

The aim of this *taxed DP-linking* is to make further inflation control superfluous. The DP-proxy forms a stable and real basis for the value of the current accounts. There is a time delay however. It is possible that the current prices increase faster than the prices of a year ago and the average price over the last year. In principle it is possible to work with the DP over a shorter period. But seasonality is so significant that it is difficult then to construct a stable DP-proxy. So, we have to accept this time delay.

If the (nominal) growth of $D(\cdot)$ is smaller than τ , the taxed DP-proxy is decreasing and the balance is also decreasing. It will take time for households to get used to this and it may anyway be inconvenient to apply it also for the household accounts that are used for daily shopping. It may be useful therefore to give households the opportunity to exclude (some of) their accounts from the linking, under the condition that the balance remains below a certain limit.

Once we have this DP-linkage for all accounts, it becomes easy to express the balance of an account as a fraction of the DP. Suppose the DP is about 10^{12} currency units. Then one could speak of 1 *pico-DP* instead of 1 unit. If an account with a balance of 1 pico is not used for transactions, the balance after a year is equal to $e^{-\tau} \cdot 1$ (pico), while the balance in currency units is more complex because it depends also on changes in the (nominal) DP.

¹⁵ See Piketty (2014), Chapter 5.

It is straightforward to formulate loans also in this DP-linked way. We call that *pico-loans*. A loan of 100 pico for 2 year, with an interest of 1% implies that one has to pay each year 1 pico interest and one has to pay back 100 pico at the end of the 2 year¹⁶. Having all loans and bonds in this DP-linked form leads to a situation where all assets and liabilities are expressed in pico. The DP-proxy forms a stable and real basis for the financial assets. Transactions with respect to real goods and services remain in currency units. This is the basis for the (taxed) DP-linking. The continuously available DP-proxy serves as the exchange rate.

5 Designing the monetary policy

In this section we describe how the simple, reference monetary policy described in the previous section can be improved. We keep the linking to a (taxed) DP-proxy, D(t). This guarantees the purchasing power of the account balances. In the simple policy of Section 4, the total amount of CBDC is kept equal to a constant fraction of D(t), say $\mu \cdot D(t)$ by adding the liquidity tax immediately to the monetary tax account of the government. Possible deficits of the government have to be financed by borrowing at the financial market and the banks are not allowed to borrow from the CB. This monetary system has the following drawbacks:

- a) The government contributes to the dynamics of the financial market and makes itself dependent of it, instead of stabilizing it.
- b) Banks are inflexible with respect to their credit supplying function. Households and businesses may make too little money available.
- c) It is unclear how to determine the right amount of CBDC. Too little CBDC may hinder productive investments, too much CBDC may lead to speculation and instability of the financial markets.
- d) There are no tools to realize the stability of the risk free interest rate.

We will discuss how to overcome these drawbacks and develop additional rules.

The first important point is to accept that the CB is government owned. So, giving the CB the opportunity to create more money(CBDC) and then adding this extra money to the monetary tax account of the government account is equivalent with not changing the amount of money and allowing the government to borrow freely (interest = 0) from the CB. We choose this latter option: the government may borrow freely from the CB and the money creation function of the CB is restricted to keeping the balances linked to D(t) and adding the liquidity tax to the

¹⁶ Compare this with the already existing inflation indexed bonds. See the Wikipedia page:

<u>https://en.wikipedia.org/wiki/Inflation-indexed_bond</u>. Kamstra and Shiller suggest to go a step further and link the bonds to the GDP. They call this trills (one-trillionth of Canada's GDP). This is worked out and related to pension building by Kamstra and Shiller (2008).

monetary tax account of the government. In this respect our approach is getting close to the Modern Monetary Theory (MMT)¹⁷. That means that we have to deal with the double-function of government expenses. In the first place to take care that the essential functions to support the society can be performed and in the second place that the monetary function of providing sufficient liquidity, credit supply and general monetary stability can be performed. The role of the CB is to monitor and safeguard this second function, but, of course, it has only very partial control over the government expenses.

To prevent that extra government expenses lead to too much CBDC in the economy, we introduce *CB* savings accounts. These accounts are made attractive for actors with superfluous CBDC. They have to deposit the money for a longer term (e.g. more than a year), but pay less liquidity tax, $\sigma < \tau$, instead of τ . This reduces the amount of (liquid) CBDC in the economy immediately, but can also be used as a signal that there is too much CBDC. We assume that really productive investments have a yield ≥ 0 (see section 4). So, if we keep $\sigma > 0$, a large total balance on these savings accounts signifies that there are no really productive investments available anymore.

To guarantee sufficient credit supply, we allow banks to borrow CBDC from the CB by transferring money from their C-account to another account, making the balance on the C-account (further) negative¹⁸. This *increases the amount of CBDC* in the economy immediately, but the total amount that is borrowed can also be used a *signal that there is too less CBDC* in the economy. The interest paid by the banks to the CB is transferred immediately to an account of the government, just like the liquidity tax.

These two signals can be used to control the amount of CBDC in the economy. Here we differ from the MMT approach. In MMT the main signal for too much CBDC is inflation, indicating a lack of production capacity. Our approach is insensitive for inflation, because of the DP-linking. We presume that the two signals suggested here are more sensitive for the amount of CBDC that is needed in the economy.

The interest ρ that banks have to pay on the loans from the CB determines an upper limit on the *interest that has to be paid in the economy for a risk free investment*. The upper limit for the interest to pay on a loan from the (commercial) bank for a risk free investment is equal to ρ + a, with a an allowance for cost and profit of the bank. It is an upper limit, because part of the CBDC a bank has available is from deposits of other actors; the interest the bank pays on these deposits is already attractive for the owners if it is larger than – σ , because that is what actors

¹⁷ See Kelton (2020).

¹⁸ A critique on the Positive Money inspired proposals is that there is lack of credit possibilities. See Fontana and Sawyer (2016) and Dyson, Hodgson and Van Lerven (2016) for a reaction.

receive on a CB savings account. So, roughly speaking, the risk free interest rate varies between $-\sigma$ and ρ .

A deposit on a CB savings account is more or less comparable with the possession of a long term government bond in the current system (or the reference system of section 4). People use these bonds as a secure savings possibility, part of their pension. A CB savings accounts could give that same opportunity. This should be taken into account in interpreting the total balance on the CB savings accounts as signal for too much CBDC in the economy. Only if the total balance on the savings accounts gets larger than some critical value, it may be interpreted as signal that there is too much CBDC in the system. This critical value is also an important monetary policy parameter.

It is also possible to make the liquidity tax on a savings account equal to 0 as long as the balance remains below a certain limit or to have separate "pension" accounts without liquidity tax. But these options are not worked out in this paper.

In the rest of this section we make the just described system more precise with a more formal model. All variables are expressed as fractions of D(t). We distinguish state (or "stock") variables and flow variables. First the state variables.

- 1) E(t) is the total amount of CBDC on accounts in the economy at the start of day t. The economy consists of households, banks and businesses. Service producing government organizations and local governments are also interpreted as businesses¹⁹. The C-accounts of the banks are not included here and the CB savings accounts are also excluded. So, transferring CBDC to a CB savings account reduces E(t) and banks borrowing from the CB increase E(t).
- 2) CB(t) is the total amount of CBDC that banks have borrowed from the CB at the start of day t.
- 3) S(t) is the total amount of CBDC on CB savings accounts, at the start of day t.
- 4) The difference S(t) CB(t) is the net economy savings. It is called NS(t).
- 5) G(t) is the total amount of CBDC on accounts of the central government (the C-account not included), at the start of day t.
- 6) CG(t) is the total amount of CBDC borrowed by the central government (through her C-account) at the start of day t.

7) Define NG(t) as the net CBDC balance of the government: NG(t) = G(t) - CG(t). For all state variables $F(\cdot)$ we define $\Delta F(t) = F(t+1) - F(t)$.

Now we describe in more detail what happens during an arbitrary day *t*.

¹⁹ See appendix 1 for a more detailed explanation.

1) The CB receives the liquidity tax and the interest on the C-accounts of the banks and pays this right away to the government. We call this CBG(t). So:

 $CBG(t) = \tau' \cdot E(t) + \sigma' \cdot S(t) + \rho' \cdot CB(t)$ (4)

, with $au'=1-e^{- au/365}$ and σ' and ho' defined in the same way.

2) We define U(t) as the net government payments in day t (the payments minus the received taxes). The payments through the CB (CBG(t)) are not included here. Together with the previous point, this implies:

 $\Delta NG(t) = CBG(t) - U(t)$ (5)

3) The development of E(t) is modelled to go in three steps. The first step is the effect of the government payments. Let $\dot{E}(t + 1)$ be the result after this first step. Then:

$$\dot{E}(t+1) = E(t) + U(t) - CBG(t) = E(t) - \Delta NG(t)$$
 (6)

4) The second step is the mechanism in the economy, described above, of seeking the right amount of liquidity. It changes $E(\cdot)$ by increasing or decreasing NS(t):

$$E(t+1) = \acute{E}(t+1) - \Delta NS(t) = E(t) - \Delta NG(t) - \Delta NS(t)$$
(7)

5) The third step is the allocation of $\Delta NS(t)$ to S(t) and -CB(t). This mechanism is the effect of the competition between extra savings through the savings accounts with the CB, increasing S(t), and investing (indirectly) through the savings accounts with a bank, and thus reducing CB(t).

The second and third step are economy behavior. That we call it "steps" is artificial, to clarify the mechanisms. In reality the two mechanisms work simultaneously of course.

The variable NS(t) signals that there is too much or too little CBDC in the economy. The signal has to be fed back to the amount of CBDC by changing the government payments: U(t) > CBG(t) or $\Delta NG(t) < 0$, a government deficit, leads to more CBDC in the economy, U(t) < CBG(t) or $\Delta NG(t) > 0$, a government surplus, leads to less CBDC. The feedback has to take care that NS(t) does not deviate too much from the interval $[0, S_n]$, where S_n is the amount of CBDC that is estimated to be necessary as risk free savings at the savings accounts with the CB. The feedback has to be integrated with the yearly planning and budgeting cycle of the government. Let NS(a) be the value of NS(t) at the moment of the budgeting cycle. If $NS(a) > S_n$, the government has to create a surplus, by reducing U(t), to correct it. If $NS_a <$ 0, the government has to create a deficit, by increasing U(t), to correct it. Developing guidelines for this feedback belongs to the monetary policy. A straightforward, proportional feedback could be:

$$\Delta NG(a) = \alpha \cdot (NS(a) - S_n) \text{ if } NS(a) > S_n \tag{8a}$$

and:

$$\Delta NG(a) = \alpha \cdot NS(a) \text{ if } NS(a) < 0 \tag{8b}$$

But, as mentioned already, it is only a guideline!

The total monetary system consists of the following elements:

- a) The precise definition of the DP-proxy, D(t).
- b) The liquidity tax τ .
- c) The limit H on the balances of the household accounts that are free of liquidity tax and the precise conditions for such accounts.
- d) The reduced liquidity tax σ , and the precise conditions for a CB savings account.
- e) The critical limit S_n for the amount of risk free savings that is considered to be adequate.
- f) The interest rate ρ on a loan from the CB, and the precise conditions for such a loan.
- g) Guidelines for the feedback on NS(t).

The variable D(t) and the parameters τ , ρ , σ can be fixed, except during a first learning period. The parameter S_n varies with the demographic situation and it is well possible to develop rules about how it has to vary. The most complicated is the feedback mechanism, because this interferes directly with the government expenses.

The independence of the CB from the government that is suggested with respect to the current monetary system is a fiction. This feedback that is necessary, of $\Delta NG(t)$ on NS(t), complicates the monetary system, but it is better to accept it. That means that when discussing the government surplus or deficit, it is also necessary to consider the monetary situation. We do not see how it could be possible to develop a fixed rule that links the government expenses completely with (only) NS(t). The development of the prices and the functioning of the financial markets are also relevant here. But we expect that NS(t) is an important signal and the necessity of feedback on it has to be taken seriously.

6 Rules versus discretion or rules & discretion. Near-money and extreme disturbances

The monetary system developed in the previous sections is aimed to be rule based. That is a system where the decisions to be taken are predetermined by a public and transparent rule. That means in this case that the definition of $D(\cdot)$ has to be fixed and its definition and value have to be publicly available, that the parameters τ , ρ , σ have to be fixed, that there is a rule determining the parameter S_n and, finally, that there is a rule for the guidelines with respect to the government expenses that takes care of the feedback on NS(t). It is clear that a pure rule based system is not acceptable. Especially the last point is complicated. It has to be explored further. But, hopefully, the insensitivity of the system for changes in the total amount of CBDC in the economy is helpful here. The backbone of the rules is the linking of the account balances to D(t).

The debate on rules versus discretion with respect to monetary policy is a classical one. People agree that a rule based system has advantages. That it is attractive that everybody knows the rules and can act accordingly. That it is not necessary for the different actors to anticipate on possible changes and for the CB to anticipate on these anticipations. See e.g. Stokey (2002) for model analyses illustrating how discretion with respect to the policy adds to unnecessary volatility. Rules that have been proposed are e.g. the *k*-percent rule of Friedman (increase the amount of money each year with k%)²⁰ and the Taylor rule (relating the interest to pay on base money to the differences of actual inflation and norm inflation and actual growth and norm growth)²¹. Most rules are inflation oriented. But the performance of the rules is rather poor²². There is rather broad acceptance that the developments in the economy are so unpredictable that following fixed rules leads to a too low performance with respect to inflation, stability and economic development in general. We have to relate our proposal to this debate.

The role of near-money

Goodhart and Jensen (2015) argue that the distinction between two schools of monetary economics, the currency school and the banking school is important to understand the debate. The currency school separates money creation and financial intermediation. Payments are in this single currency. The banking school accepts that it is also possible to pay with demand deposits created and guaranteed by banks, possibly on a fractional reserve basis²³. For the currency school it is essential to have a good way to establish the total amount of money. That is the main way to control the inflation. And, of course, the currency school proponents look for some general rule to determine the amount of money. The banking school is more pragmatic here. People can settle their transactions with money or with demand deposits or with whatever form of "near-money²⁴". That brings about a variety of tools to influence the financial system and given this variety it is does not make sense to try to stick to fixed rules. The banking school goes for flexibility and discretion. An argument that may also play a role is that discretion gives also much more freedom to the CB. It is not only discretion, but it is *their* discretion, while rules can be discussed publicly and politically.

The banking school is main stream, but since the financial crisis of 2008 there has been a revival of the currency school. People have associated this crisis with the growing complexity of the

²⁰ See Friedman (1960).

²¹ See Taylor (1993).

²² It has to be noted that rules like that of Taylor are not even intended to be mechanistically applied. They serve rather as benchmark to make the CB monetary policy more transparent and easier to communicate. See also Levin (2014).

²³ This discussion goes back to Ricardo and his proposals for the establishment of a National Bank.

²⁴ Near money consists of highly liquid assets which are not cash, but can easily be converted into cash.

monetary and financial systems. This complexity has led to a difficult to control growth of the financial sector and the lack of transparency that came with it has resulted in various ways to abuse the possibilities²⁵. So, there are good reasons to simplify, and one of the possibilities is to separate again money creation and financial intermediation. Goodhart and Jensen (2015) have some sympathy for this separation and see the advantages, but warn that it is difficult to determine a "hard and fast" distinction between money and near money. The approach developed here belongs to the currency school. We presuppose indeed, that our money, CBDC, is used for all transactions or at least for all payments from households to businesses. The balances are linked to D(t), the total sum of all these payments over the past year. This makes the system less sensitive for changes in the total amount of CBDC, but it is certainly important that using CBDC is by far the most important way to settle transactions. Otherwise, D(t) is getting unstable as proxy of the DP.

Currently the most important forms of near-money are *Money Market Funds* (MMF) and *foreign currency* or *Bitcoins* and other crypto currency.

MMF. The body of an MMF is formed by liquid bonds (close to their redemption date). An MMF can be used in the same way as bank deposits. If the payee requires payment in CBDC, the MMF share can be exchanged in CBDC just in time. Some payees may agree with direct payment in MMF. It is not to expect however, that the yield on liquid bonds is much higher than the yield on CBDC balances ($-\tau$ or $-\sigma$, depending on where it is stalled). And it is not necessary to use this option for security reasons, since CBDC is completely save. Households are certainly not going to use it for their payments.

Foreign currency/bitcoins. Another possibility to deal with a surplus of liquidity (CBDC) is to exchange it for some foreign currency and change it back as soon as necessary. This may be attractive in times that D(t) is not increasing while in other countries (or in the bitcoin world) the purchasing power of the currency remains stable. If the transactions are still settled with CBDC, this does not lead to a decrease of D(t) and D(t) is still a good basis for linking. To guarantee this is essential for our system. It is helpful here to have government and semigovernment organizations requiring payment in CBDC. Maybe it is possible to determine that all transactions that have to be *accountable* are in CBDC.

Extreme disturbances

So, the backbone of the system, the taxed linking to D(t) is rather robust. It works in all more or less normal circumstances, also if $D(\cdot)$ decreases temporarily. In exceptional circumstances, however, like the actual Corona crisis, it is necessary to apply discretion. In such cases we have

²⁵ Roubini and Mihm (2010)

to be aware of the fact that D(t) is in fact an estimate of the future D(t). The link has to be suspended until the economy is back to normal.

Decision making

The system is mainly rule based. The rules are developed by the CB, but have to be agreed upon by government and parliament. This necessitates public and political discussion. First about the structure of the system. In a parallel paper we explained how it is possible to migrate the current system into this one. So, it is feasible, but it is certainly a major change. We are not going to reflect on the possible discussions, but we just presuppose a situation where the structure of the system is accepted. The definition of D(t) looks rather a-political. That is different, however, for τ, σ, ρ . But it may be helpful here that it is possible to work with a learning period. The same holds for the limit H on the household accounts that are free of liquidity tax. The final values of the parameters could be the result then of a gradual process of convergence. The parameter S_n is more dynamic, because it is also related to demographic changes. The CB has to develop general rules and discuss these publicly. The elements that are most open for discussion are the guidelines with respect to the feedback on NS(t). It may be possible to develop explicit guidelines. But each year, the actual feedback is going to be the result of political decision making with respect to government expenses. Hopefully it is possible to develop bandwidths that are politically acceptable. How wide these bandwidths have to be depends on the sensitivity of the monetary performance (stability of purchasing power and of risk free interest) for changes in the precise feedback. This has to be explored.

7 The Eurozone

In the previous sections we considered the situation with one currency and one country and government. Is it possible to apply the same approach in the Eurozone, with one currency and 19 governments/countries?

If we want to keep this idea of linking the account balances to a macro-economic variable, it has to be one and the same variable, a proxy D(t) for the domestic product of the whole Eurozone. There is a considerable heterogeneity within the Eurozone, so, price levels may vary significantly from country to country. But as long as the price changes correspond, the automatic inflation correction through the linking works well.

The parameters τ , ρ , σ are Eurozone wide. There is no option to make these country dependent. But that is different for the parameter S_n and the feedback on NS(t). Here we have the possibility to make the system country dependent. Let $E_i(t)$, $CB_i(t)$, $S_i(t)$, $NS_i(t)$, $G_i(t)$, $CG_i(t)$, $NG_i(t)$ be the country specific forms of the corresponding variables, defined in section 5. Let $E(t) = \sum E_i(t)$, etc. and $S_n = \sum S_{ni}$. We

assume that the liquidity tax and the interest paid by banks for loans of the CB are transferred to the country of the account owner. We need to organize the feedback of $\Delta NG(t)$, so of all $\Delta NG_i(t)$ on NS(t), so on all $NS_i(t)$. How can we translate, for instance, the proportional feedback suggested in section 5 to this case with more countries? See the equations (4a) and (4b). Concentrate first on the situation where NS(a) is above its upper limit. If the economies were fully integrated, we could choose:

 $\Delta NG(a) = \alpha \cdot (NS(a) - S_n) \text{ if } NS(a) > S_n$ (9) and then distribute $\Delta NG(a)$ over the 19 economies as far as $NS_i(a) > S_{ni}$, in proportion to the differences $NS_i(a) - S_{ni}$. If the economies are not integrated, we can choose:

 $\Delta NG_i(a) = \alpha \cdot (NS_i(a) - S_{ni}) \text{ if } NS_i(a) > S_{ni}, \tag{10}$ just as in the case with one country.

And the situation where NS(t) is below its lower limit can be treated in the same way.

It makes sense however to organize the feedback in the situation where NS(t) is above the upper limit as if the economies are not integrated and the situation where NS(t) is below its lower limit as if the economies are integrated. The argument for this is that banks work internationally. It is cheaper for banks to borrow from each other than to borrow from the CB. So, the shortages are resolved mutually if possible. This leads to:

$$\Delta NG_i(a) = \alpha \cdot (NS_i(a) - S_{ni}) \text{ if } NS_i(a) > S_{ni}, \text{ for all } i, \tag{11}$$

$$\Delta NG(a) = \alpha \cdot NS(a) \text{ if } NS(a) < 0 \tag{12}$$

and distribute $\Delta NG(a)$ over the 19 economies as far as $NS_i(a) < 0$, in proportion to the $-NS_i(a)$.

It is not necessary of course let the guidelines for government budgets be based on proportional feedback. But this example of proportional feedback illustrates well how the individual characteristics of the countries with respect to saving, leading to differences in S_{ni} and $NS_i(t)$, can be taken into account. It is interesting to compare this with the guidelines that are used currently: A government deficit should not be higher than 60% of the DP.

8 Conclusions and suggestions for further research

This paper builds on Van Hee & Wijngaard (2021). It fits in the general movement of exploring the possibilities of Central Bank Digital Currency (CBDC) in our monetary systems. The weaknesses of the current systems became clear during the financial crisis of 2008 and its aftermath. These weaknesses are directly connected with the two-tiered character of the system (base money and claims on base money): we use almost only bank money, claims on base money, while we are not very interested in the use of cash, the only form of base money

accessible to us. It is widely agreed upon that it is time to widen the role of base money (or CBDC). The main stream is to fit this into the current system, so have digital cash next to physical cash without changing the two tiered character of the system. We propose to go a big step further and make the system one-tiered, skip the use of physical cash and have CBDC as our primary form of money, the only legal tender²⁶. That leads to a situation where the Central Bank (CB) creates the money and the main role of the banks is to intermediate between lenders and borrowers.

The basis for such a new system, the payment system, is described in Van Hee and Wijngaard (2021). The main elements are sketched in section 2 of this paper. The rest of this paper is devoted to the exploration of the possibilities that such a change gives for the design of the monetary policy. An overview of the tools that are available is given in section 3. In the sections 4 - 7 the tools are used to design one specific monetary policy. The first step is to link the account balances to a proxy of the DP. This is described in section 4. It makes the monetary system insensitive for price changes and conserves the purchasing power of the economic actors. The second step, described in section 5, is to allow that the government can borrow freely from the CB. This brings our proposal rather close to the Modern Monetary Theory (MMT). Bonds are not any longer necessary to finance the deficits of the government. Instead of that we introduce the possibility to open a savings account with the CB that is relatively attractive. A too high total balance on these savings accounts can be used as a signal that there is too much CBDC in the economy and may lead to guidelines to restrict the government expenses. A high total amount of CBDC borrowed by the banks can be used as signal that there is too less CBDC in the economy. The two steps, described in section 4 and 5, lead to a monetary system with automatic inflation control and stability with respect to credit possibilities, savings possibilities and risk free interest rate. And the monetary policy is rule based. The limits of this rule based character of the policy are discussed in section 6. In the sections 4 - 6 we assume that there is one government with one CB, in section 7 we explore the consequences of having more governments with one CB, like in the Eurozone.

Looking at these results, we may state that the monetary policy that is developed is sufficiently attractive to warrant further consideration. It shows that the possibilities resulting from a switch to a CBDC based system are indispensable. Further research is necessary of course, to work out the designed monetary policy in more detail, but also to explore alternative policies.

We are not going to try a complete list of future research issues, however, because it starts anyway with the question of how to convince the community of bankers and monetary

²⁶ In Van Hee and Wijngaard (2019) we discussed also how ambivalent and dysfunctional such a marginal introduction of CBDC is.

economists that the current system has failed and that we have to prepare to switch to a CBDC based system with as main role for the banks to intermediate between lenders and borrowers.

Appendix 1 The construction of a suitable DP-proxy.

We start with a somewhat alternative definition of the DP, Y. A definition that is close to the definitions normally in use, but that makes it easy to derive a simple approximation, D(t) that can be monitored throughout the whole year. See figure A1.

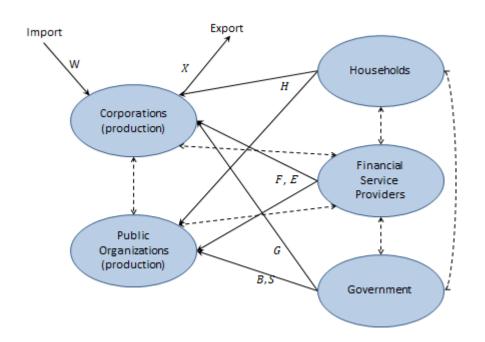


Figure A1: Constructing a simplified version of the DP

The left hand side of the figure gives the producing organizations, the right hand the consuming organizations. The consuming organizations are Households, Financial Service Providers and Government, the producing organizations are (private) corporations and producing public organizations. The producing public organizations are for instance schools, hospitals, departments for the maintenance of roads and bridges, waterworks and sewerage, housing, etc. So, the government is split into a productive part and a non-productive part. In the non-productive part we find for instance: general direction (central and local), tax offices, etc. The precise distinction between productive and non-productive is not elaborated here, but is an important step in the detailed design of the DP.

Only the drawn arrows are included in the DP. These stand for expenses from consumers to producers. So, the expenses between producing organizations are not counted. Production is only counted when it is consumed.

All household expenses to producing organizations, H, are part of the DP. So, buying a house is also included. Direct expenses for health care are also included. The payments for health care that are made on behalf of insured households are included in E. Other insurances are treated in the same way. So, the payments made by a fire insurance company to a building company, for an insured household are included in E. The expenses of Financial Service Providers that are necessary to build and maintain their own organization (the operational costs) are included in F. The insurance premiums of households are included in the dashed arrow from Households to Financial Service Providers. Insurance premiums of corporations and (producing) public organizations and payments to these organizations made by financial service providers because of that are represented by dashed arrows from and to Financial Service Providers and are not included in the DP. The intermediating role of the Financial Service Providers has no direct effect on the DP. ²⁷Payments for financial products are anyway excluded from the calculation of the DP.

The expenses for the own organization (the operational costs) of the (non-productive) government are included in *G*. Subsidies for services for households are included in *S*. The other contributions from the government to public organizations are included in *B*. The precise split between productive and non-productive government is important here. For instance the household contribution for water and sewerage. Whether that is modelled as a tax paid to a tax office or as a service contribution directly paid to the producing organization depends on the precise split between government and producing public organizations.

And finally we have to include import W and export X. So the DP is defined as:

$$Y = H + E + F + G + S + B + X - W$$

To be able to monitor the DP directly from the payments that are made, we have to replace expenses by payments. So, we define H(t) as the payments by households in the past year, as monitored on day t. The same for the other elements of the DP. This leads to the following approximation of the DP:

²⁷ This is a bit awkward. The services of someone who helps you to organize your garden are included in the DP, while the services of someone who helps you to organize your finance are not included. This is for pragmatic reasons. It is important that the expenses for the financial product are not included and it is not always easy to distinguish the expenses for the service and the expenses for the financial product.

$$Y(t) = H(t) + E(t) + F(t) + G(t) + S(t) + B(t) + X(t) - W(t)$$

These variables are available for the CB throughout the year, if the payments are labelled sufficiently precise. We could use D(t) = Y(t) then. There may be irregularities, however, in Y(t). For instance because the government does not always make certain important payments at the same date. So, instead of using Y(t) it may be better to use an exponentially smoothed average: $\hat{Y}(t) = \alpha \cdot Y(t) + (1 - \alpha) \cdot \hat{Y}(t - 1)$. Another option is to skip B(t) and choose the following approximation:

$$D(t) = Y'(t) = H(t) + E(t) + F(t) + G(t) + S(t) + X(t) - W(t)$$

Or even

$$D(t) = Y''(t) = H(t) + X(t) - W(t).$$

And Y'(t) and Y''(t) can also be smoothed of course.

Instead of Y(t), it is also possible, of course, to use $c \cdot Y(t)$. That is completely equivalent. This makes it possible to switch smoothly from one approximation to another. Suppose at day t we want to switch from Y(t) to Y'(t). Then we define $c \coloneqq Y(t)/Y'(t)$ and we continue with $c \cdot Y'(t)$. Such a switch may be useful if there are some structural changes in the structure of the government and the way the productive government organizations are paid for. Consider for instance the possibility that it is decided that from a certain date on, all healthcare is completely free. That may result in some instability of the payments for healthcare. It may be better therefore to exclude healthcare for some time from D(t) and include it again as soon as the situation has stabilized.

We are not going to give one final choice for how to define D(t). The different options have to be explored: their stability, their quality as approximation of Y(t) and the complexity of the labelling that is necessary. We assume here that there is a reasonable possibility.

Labelling

Transaction labelling is necessary to be able to estimate the components of the DP-proxy that is actually used and of potential alternatives. This seems to be a heavy burden, but we have already such a labeling for the execution of the VAT and the payment industry is obliged to monitor all transactions in order to prevent illegal activities, among others white washing.

- Labeling must be easy to do: Anyway, the sender and the receiver should be part of it, as well as their BIC codes. Further it should be close to the existing VAT codes.
- The system must keep fingerprints of all transactions in order to verify payments.
- Everybody should record its own transaction details in order to be able to prove the legality of the payments using the fingerprints in the system.

REFERENCES

Admati and Hellwig (2013), "The Bankers New Clothes", Princeton University Press, 2013

Bordo and Levin (2017), "Central Bank Digital Currency and the Future of Monetary Policy", *NBER working paper series* 23711

Buiter (2009), "Negative nominal interest rates; Three ways to overcome the zero lower bound", *The North American Journal of Economics and Finance*, **20**: 213-238

Dyson, Hodgson and Van Lerven (2016), "A Response to critiques of 'full reserve banking'", *Cambridge Journal of Economics*, **40**: 1351-1361

ECB (2020), "Report on a Digital Euro"

Fontana and Sawyer (2016), "Full Reserve banking: more 'cranks' than 'brave heretics'", Cambridge Journal of Economics, **40**: 1333-1350

Friedman (1960), "A program for Monetary Stability", Fordham University Press

- Goodhart and Jensen (2015), "A Commentary on Patrizio Laina's 'Proposals for Full Reserve Banking: A Historical Survey from David Ricardo to Martin Wolf", *Economic Thought*, 4 : 20-31
- Van Hee and Wijngaard (2019), "All Attention to Debt stands in the way of improving money", *ESB*, 104: 251-253
- Van Hee and Wijngaard (2021), "A new Digital Currency System", submitted
- Huber (2017), "Sovereign Money; Beyond Reserve Banking", Palgrave
- Jackson and Dyson (2012), "Modernising Money", Positive Money
- Kamstra and Shiller (2008), "The Case for Trills: Giving Canadians and their Pension Funds a Stake in the Wealth of the Nation," C.D. Howe Institute Commentary, *The Pension Papers*, 271
- Kelton (2020), "The Deficit Myth; Modern Monetary Theory and how to build a better economy", John Murray
- Levin (2014). "The Design and Communication of Systematic Monetary Policy Strategies." Journal of Economic Dynamics and Control, 49: 52-69.
- Piketty (2014), "Capital in the Twenty-First Century", Harvard University Press

Roubini and Mihm (2010), "Crisis Economics", Penguin Books

Ryan-Collins, Greenham, Werner and Jackson (2011), "Where does Money come from", NEF

Stokey (2002), "Rules vs Discretion' After Twenty-Five Years", NBER Macroeconomics Annual Sveriges Riksbank (2017), "The Riksbank's e-krona project: Report 1"

Taylor (1993), "Discretion versus Policy Rules in Practice", *Carnegie-Rochester Conference Series* on Public Policy, 39: 195-214